

NGF COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE LESSON PLAN (july-dec 2025)

Name of Teacher: Ms.Reetu Designation: Assistant Professor

Subject Name: AIES Branch: Computer Science

Semester: B.tech AIML 3RD sem Subject Code: (PCC-AI-301)/CAI-201-V

Date of Start: 14 July 2025 Total Load: 17 hr 30 mins

Date of Completion: 21 Nov. 2025

Module/Unit-1: Introduction to Al

S.No	Name of Topic	Hours
1	Basic Concepts of AI	50
2	Elements of AI	50
3	Al Techniques	50
4	Agents of AI	50
	Total	3 hr 20
		min

Module/Unit 2- Al Search Techniques

S.No	Name of Topic	Hours
1	Problem solving techniques	50
2	State Space Search	50
3	DFS	50
4	BFS	50
5	Informed Search	50
6	Constraint Satisfaction	50
7	MiniMax Algorithm	
	Total	5 hr 50
		mins

Module/Unit 3- Knowledge Representation

S.No	Name of Topic	Hours
1	Unification	50
2	Predict Logic	50
3	Rule based systems	50
4	Structured Knowledge: Semantic Nets, Frames, Inheritance	50
	Total	3hr.20
		min

Module/Unit 4- Uncertain Knowledge and Reasoning

S.No	Name of Topic	Hours
1	Probabilistic reasoning: Bayes' theorem, Bayesian Networks	50
2	Dempster-Shafer Theory	50
3	Learning Techniques: Observation-based learning, inductive learning	50
4	Neural networks basics: supervised & unsupervised learning	50
	Total	3hr.20
		min

Module/Unit 5- Applications & Expert Systems

S.No	Name of Topic	Hours
1	Applications of AI: Computer Vision, NLP, Scientific Analysis, Medical Diagnosis, Financial Analysis	50
2	Expert Systems: Cognitive problems, architectures (Knowledge base, inference engine, MYCIN overview)	50
	Total	1 hr.40 min

- 1.Artificial Intelligence By Elaine Rich and Kevin Knight, Tata McGraw Hill.
- 2. Introduction to AI and Expert Systems By Dan W.Patterson, PHI.
- 3. Principles of Artificial Intelligence By Nils J.Nilsson, Narosa Pub. house.
- 4. Foundation Artificial Intelligence & Expert Systems by VS Janakiraman K, Sarukesi P

Signature of Teacher Director/Dean Academics

Approved by HOD/Dean

Approved by IQAC

DEPARTMENT OF COMPUTER SCIENCE LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms, Pinkee Designation: Asstt. Professor

Subject Name: DATA STRUCTURES & ALGORITHMS Branch: AI/ML Semester: 3rd

Subject Code:PCC-CS-301/CEU-201-V

Date of Start: 14/07/25 Total Load: 27 hrs Date of Completion: 21/11/25

Module/Unit-1: INTRODUCTION

S.No	Name of Topic	Hours
1	Basic Terminologies: Elementary Data Organizations	1
2	Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm	1
3	Asymptotic Notations, Time-Space trade off	2
4	Searching: Linear Search and Binary Search Techniques and their complexity analysis.	2
	Total	5

Module/Unit 2- STACKS AND QUEUES

S.No	Name of Topic	Hours
1	ADT Stack and its operations: Algorithms and their complexity analysis	1
2	Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis	1
3	ADT queue, Types of Queue: Simple Queue	1
4	Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis	2
	Total	5

Module/Unit-3: LINKED LISTS

S.No	Name of Topic	Hours
1	Singly linked lists: Representation in memory	1
2	Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list;	2
3	Linked representation of Stack and Queue, Header nodes	1
4	Doubly linked list: operations on it and algorithmic analysis	1
5	Circular Linked Lists: all operations their algorithms and the complexity analysis	1
6	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree	1
7	Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis	2
8	Applications of Binary Trees, B Tree, B+ Tree: definitions, algorithms and analysis	1
	Total	10

Module/Unit-4: SORTING AND HASHING

S.No	Name of Topic	Hours
1	Objective and properties of different sorting algorithms: Selection Sort	1
2	Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods	2
3	Hashing and collision resolution	1
4	Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis	2
	Total	6

TEXT BOOKS and REFERENCE BOOKS:

- 1. A. M. Tenenbaum, Langsam, Moshe J. Augentem, "Data Structures using C," PHI Pub.
- 2. A.V. Aho, J.E. Hopcroft and T.D. Ullman, "Data Structures and Algorithms" Original edition, Addison-Wesley, 1999, Low Priced Edition.
- 3. Ellis Horowitz & Sartaj Sahni, "Fundamentals of Data structures" Pub, 1983,AW

V ————

Signature of Teacher

Approved by HOD/Dean

LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms. Vaishali Munjal Designation: Assistant professor Subject Name: D.E

Branch: AIML Semester: 3RD Subject Code: ESC-302/ELU-202-V

Date of Start: 14/07/2025 Total Load: ...42..hrs Date of Completion: 21/11/2025

Module/Unit-1:

S.No	Name of Topic	Hours
1	BJ Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations	50 MIN
	·	70) (I) I
2	Boolean algebra, examples of IC gates	50 MIN
3	, number systems-binary, signed binary, octal hexadecimal number	50 MIN
4	binary arithmetic, one's and two's complements arithmetic	50 MIN
5	, codes, error detecting and correcting codes	50 MIN
6	characteristics of digital ICs, digital logic families	50 MIN
7	TTL, Schottky TTL and CMOS logic	50 MIN
8	interfacing CMOS and TTL	50 MIN
9	Tri-state logic T Structure	50 MIN
	Total	7.5HOURS

Module/Unit 2

S.No	Name of Topic	Hours
1	Standard representation for logic functions, K-map representation, simplification of logic functions using K-map	50 MIN
2	minimization of logical functions.	50 MIN

3	, Multiplexer, De-Multiplexer/Decoders	50 MIN
4	Adders, Subtractors, BCD arithmetic	50 MIN
5	carry look ahead adder, serial adder	50 MIN
6	ALU, elementary ALU design, popular MSI chips	50 MIN
7	code converters, priority encoders	50 MIN
8	decoders/drivers for display devices	50 MIN
9	Q-M method of function realization	50 MIN
10	Don't care conditions	50 MIN
	TOTAL	8
		HOURS

Module/Unit 3

S.No	Name of Topic	Hours
1	A 1-bit memory, the circuit properties of Bistable latch	50 MIN
2	clocked SR flip flop, J- K-T	50 MIN
3	D types flip flops, applications of flip flops	50 MIN
4	shift registers, applications	50 MIN
5	serial to parallel converter, parallel to serial converter	50 MIN
6	ring counter, sequence generator	50 MIN
7	ripple (Asynchronous) counters, synchronous counters	50 MIN
8	counters design using flip flops, special counter IC's	50 MIN
9	asynchronous sequential counters, applications of counters.	50 MIN
	TOTAL	7.5 HOURS

Module/Unit 4

1	weighted resistor/converter, R-2R Ladder D/A converter	50 MIN
2	specifications for D/A converters, examples of D/A converter ICs,	50 MIN
3	sample and hold circuit, analog to digital converters: quantization and encoding	50 MIN
4	parallel comparator A/D converter	50 MIN
5	counting A/D converter, dual slope A/D converter	50 MIN
6	A/D converter using voltage to frequency and voltage to time conversion	50 MIN
7	specifications of A/D converters, example of A/D converter ICs	50 MIN
8	successive approximation A/D converter	50 MIN
	TOTAL	6.6
		HOURS

Module/Unit 5

1	Memory organization and operation, expanding memory size	50 MIN
2	classification and characteristics of memories	50 MIN
3	sequential memory, read only memory (ROM), read and write memory(RAM)	50 MIN
4	content addressable memory (CAM), charge de coupled device memory (CCD)	50 MIN
5	commonly used memory chips, ROM as a PLD, Programmable logic array	50 MIN
6	Programmable array logic	50 MIN
7	complex Programmable logic devices (CPLDS)	50 MIN
8	Field Programmable Gate Array (FPGA).	50 MIN
	TOTAL	6.67 HOURS

REFERENCES:

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.
- 3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

Johnson

Woma

Signature of Teacher

Approved by HOD/Dean

DEPARTMENT OF COMPUTER ENGINEERING LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms. Manisha Designation: Assistant professor

SubjectName: Mathematics III

Branch: CSE AIML Semester:HIrd Subject Code:BSC-301/MTU-213-V

Date of Start:14th July 2025 Total Load: .36....hrs Date of Completion:21 Nov 2025

Module/Unit-1: SEQUENCES AND SERIES

S.No	Name of Topic	Hours
1	convergence of sequence and series	1
2	test for convergence	1
3	power series ,Taylor series	1
4	series or exponential	1
5	trigonometric and logarithmic functions	1
	Total	5

Module/Unit 2-MULTIVARIABLE CALCULUS (DIFFERENTIATION)

S.No	Name of Topic	Hours
1	limit and continuity	1
2	partial derivatives, total derivative	1
3	tangent plane and normal line	1
4	maxima minima and saddle point	1
5	method of Lagrange multipliers	1
6	gradient, curl and divergence	1
	Total	6

Module/Unit 3- MULTIVARIABLE CALCULUS (INTEGRATION)

S.No	Name of Topic	Hours
1	change of order of integration , change of variables	2
2	theorems of green ,gauss and stokes	3
3	orthogonal curvilinear coordinates	1
4	simple application involving cubes ,sphere and rectangular parallelepipeds	1
	Total	8

Module/Unit 4- FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

S.No	Name of Topic	Hours
1	exact equation	3
2	linear equation	1
3	linear equation with variable coefficient	1
4	equation not of first degree	1
5	equation solvable for p,x,y	1
6	clairauts type	1
	Total	8

$\underline{Module/Unit\ 5-}$ Differential equations of higher orders

S.No	Name of Topic	Hours
1	second order linear differential equation	1
2	second order linear differential equation with variable coefficients	1
3	method of variation of parameters	1
4	Cauchy Euler equations	1
5	Power series solutions	1
6	Legendre polynomials	2
7	Bessel functions of the first kind and their properties	2
	Total	9

Woma

Signature of Teacher

Approved by HOD/Dean

DEPARTMENT OF COMPUTER ENGINEERING LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms. Chaman Lata Designation: Assistant professor

SubjectName: ETC

Branch: CSE /AIML Semester:IIIrd Subject Code:HSMC-01/ AEC-112-V Date of Start: 14 July 2025 Total Load: .36....hrs Date of Completion: 21 Nov 2025

Module/Unit-1: Reading Skills

S.No	Name of Topic	Hours
1	Comprehension Passages	2
2	Skimming and Scanning	2
3	Note Making & Summarizing	1
4	Analyzing Literary Texts	1
	Total	6

Module/Unit 2 Writing Skills

S.No	Name of Topic	Hours
1	Paragraph Writing	2
2	Essay Writing	2
3	Letter Writing (Formal & Informal)	2
4	Report Writing	2
	Total	8

Module/Unit 3- Grammar & Vocabulary

S.No	Name of Topic	Hours
1	Tenses and Sentence Structure	2
2	Active & Passive Voice	2
3	Direct & Indirect Speech	2
4	Error Detection & Correction	1
5	Vocabulary Building	1
	Total	8

Module/Unit - 4 Communication Skills

S.No N	ame of Topic	Hours
--------	--------------	-------

1	Oral Presentation	2
2	Group Discussion	2
3	Interview Skills	2
4	Listening & Speaking Activities	1
	Total	7

Module/Unit 5- Applied English

S.No	Name of Topic	Hours
1	Professional Email Writing	2
2	Notice, Agenda & Minutes Writing	2
3	Resume & Cover Letter Preparation	2
4	Technical Writing & Documentation	1
	Total	7

TEXT BOOKS:

Contemporary English Grammar – David Green

- 2. High School English Grammar & Composition Wren & Martin
- 3. Technical Communication Meenakshi Raman & Sangeeta Sharm

Reference Books:

- 1. Business Communication C.S. Rayudu
- 2. Effective Technical Communication Barun K. Mitra
- 3. English for Engineers S.P. Dhanavel

Signature of Teacher

Approved by HOD/Dean

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING LESSON PLAN (JULY-DEC 2025)

Name of Teacher: Neha jayant Designation: Assistant Professor Subject Name project lab

Branch: Btech CSE-AI/ML Semester: 3rd Subject Code:PROJ-CS-301
Date of Start: 14-07-25 Total Load:26 hours 40 min Date of Completion: 21-11-25

S.No	Name of Topic	Hours
1	Objective: Introduce students to the concept of project-based learning and allow them to choose a project of interest.	100 min
2	Discuss the importance of projects in understanding real-world applications. Present examples of successful projects from previous years. Guide students in selecting a project based on their interests and skills	100min
3	Initial project proposal and rationale.	100 min
	Total	5 hours

S.No	Name of Topic	Hours
1	Help students research and plan their projects, defining goals, milestones, and required	100 min
	resources.	
2	Provide guidance on conducting research and gathering relevant information. Help students create a project plan outlining key tasks and deadlines. Conduct individual or group consultations to refine project ideas.	100 min
3	Submission of a detailed project plan	100 min
	Total	5 hours

S.No	Name of Topic	Hours
1	Assist students in implementing their projects, providing technical support and	100 min
	troubleshooting	
2	Conduct workshops or tutorials on relevant tools and technologies. Facilitate peer	100 min
	collaboration and feedback sessions. Monitor progress through regular check-ins	
3	Progress reports and demonstration of initial project implementation.	100 min
	Total	5 hours

S.No	Name of Topic	Hours
1	Help students refine their projects, prepare presentations, and reflect on the learning process.	100 min
2	Provide feedback on project progress and offer suggestions for improvement. Guide students in preparing a final presentation or demonstration. Facilitate peer evaluations and reflections on the learning journey.	100 min
3	Final project presentation and submission. Reflective essays on the challenges and learning experiences.	100 min
	Total	5 hours

S.No	Name of Topic	Hours
1	Project Documentation,	100 min
2	Technical Competence: Assess the technical aspects of the project and the mastery of relevant tools and technologies.	100 min
3	Collaboration and Communication: Evaluate how well students collaborate with peers, seek feedback, and communicate their ideas.	100 min
4	Problem Solving: Assess the ability of students to overcome challenges and solve problems encountered during the project.	100 min
	Total	6 hours 40 min

New Wome

Signature of Teacher

Approved by HOD/Dean

NGF COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE LESSON PLAN (july-dec 2025)

Name of Teacher: Ms.Reetu Designation: Assistant Professor

Subject Name: IT MATLAB Branch: B.tech AIML

Semester: B.tech 3RD sem Subject Code: (PCC- CS-302)

Date of Start: 14 July 2025 Total Load: 55 hr

Date of Completion: 21 Nov. 2025

Module/Unit-1: Introduction

S.No	Name of Topic	Hours
1	Introduction to MATLAB	100
2	Data types and variables	100
3	Inter-conversion of Data types,	100
4	MATLAB Variables	100
5	Keywords and Constant	100
6	Session Command.	100
7	MATLAB Operators and Operations: Operators (Arithmetic, Relational, Logical, Bitwise),	100
8	Set Operations	100
9	Operator Precedence,	100
10	Mathematical Functions.	100
	Total	16 hr 40 min

Module/Unit 2- PROGRAMMING IN MATLAB

S.No	Name of Topic	Hours
1	Decision Making	100
2	Script and Function	100
3	Loops,	100
4	branches, Functions,	100
5	Working on Script File (Creating, Saving and Executing),	100
6	MATLAB I/O	100
7	Formatted I/O Method,.	100
	Total	11hr 40 MIN

Module/Unit 3- ARRAYS AND GRAPHICS

S.No	Name of Topic	Hours
1	Introduction to Matrices	100
2	Operations on Arrays/Matrices	100
3	Manipulations of Arrays/Matrices,	100
4	Expansion of Matrix Size,	100
5	Reduction of Matrices/Arrays order	100
6	Introduction to plot,	100
7	Basic 2-D Plots(Style options, Labels, Axis control, etc.),	100
8		100
	specialized 2-D Plots	

9		100
	drawing multiple plots.	
10	Using MATLAB for fractals and chaos and Conway game of life	100
	Total	16 hr 40
		min

Module/Unit 4-: FILE HANDLING AND DEBUGGING

S.No	Name of Topic	Hours
1	Introduction to file handling	100
2	working on files,	100
3	accessing of Text File	100
4	Saving/ Loading MATLAB Variables	100
5	reading data without opening file,	100
6	reading and writing Excel.	100
	Total	10 hr

TEXT BOOKS:

1. Delores M. Etter, David C. Kuncicky, Holly Moore, "Introduction to MATLAB 7.0", Pearson, 2013.

- 2. Rudra Pratap, "Getting Started with MATLAB", OXFORD University Press, 2010.
- 3. Agam Kumar Tyagi, "MATLAB and Simulink for Engineers", University Press, 2012.

Signature of Teacher Director/Dean Academics

Approved by HOD/Dean

Approved by IQAC

DEPARTMENT OF COMPUTER SCIENCE LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms, Pinkee Designation: Asstt. Professor

Subject Name: Introduction to Artificial Intelligence Lab Branch: AI/ML

Semester:3rd Subject Code: PCC-AI-302

Date of Start: 14/07/25 Total Load: 20 hrs Date of Completion: 21/11/25

LAB EXPERIMENT

S.No	Name of Topic	Hours
1	Program 1: Simple Rule-Based Chatbot using if-else Objective:	100 Min
	Understand how knowledge is encoded using simple rules.	
2	Program 2: AI Agent Simulation Objective: Create a basic	100 Min
	reflex agent that reacts to input (e.g., traffic light color =	
	action)	
3	Program 3: Implement Depth First Search (DFS)	100 Min
4	Program 4: Implement Breadth First Search (BFS)	100 Min
5	Program 5: Implement A Search Algorithm*	100 Min
6	Program 6: Solve 8-puzzle using any search algorithm	100 Min
7	Program 7: Implement Tic-Tac-Toe using Minimax Algorithm	100 Min
8	Program 8: Represent knowledge using Propositional Logic in	100 Min
	Python	
9	Program 9: Implement Unification Algorithm	100 Min
10	Program 10: Represent knowledge using Semantic Net in graph	100 Min
	format	
	Total	17 Hrs.

TEXT BOOKS and REFERENCE BOOKS:

- 1. Artificial Intelligence By Elaine Rich and Kevin Knight, Tata McGraw Hill.
- 2. Introduction to AI and Expert Systems By Dan W.Patterson, PHI.
- 3. Principles of Artificial Intelligence By Nils J.Nilsson, Narosa Pub. house.

4. Foundation Artificial Intelligence & Expert Systems by VS Janakiraman K, Sarukesi P

Approved by HOD/Dean Approved by IQAC Director/Dean Academics

DEPARTMENT OF COMPUTER ENGINEERING

LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms. Vaishali Munjal Designation: Assistant professor

Subject Name: D.E Lab

Branch: AIML Semester: 3rd Subject Code: ESC-304

Date of Start: 14/07/2025 Total Load: ...35..hrs Date of Completion: 21/07/25

EXPERIMENTS

S.No	Name of Topic	Hours
1	To study and verify the truth table of logic gates	200 MIN
2	To realize half/full adder and half/full subtractor.	200 MIN
	i. Using X-OR and basic gatesii. Using only nand gates.	
3	To realize IC7483 as parallel adder /	200 MIN
	Subtractor. Apparatus	
4	To verify BCD to excess –3 code conv ersion using NAND	200 MIN
	gates. To study and verify the truth table of excess-3 to BCD	
	code converter	
5	To convert given binary numbers to gray codes.	200 MIN
6	To verify the truth table of multiplexer using 74153 & to verify a	200 MIN
	demultiplexer using 74139. To study the arithmetic circuits half-adder	
	half Subtractor, full adder and full Subtractor using multiplexer.	
7	To verify the truth table of MUX and DEMUX using NAND.	200 MIN

8	To verify the truth table of one bit and two bit comparators using	200 MIN
	logic gates.	
9	To convert a given octal input to the binary output and to study the LED display using 7447 7-segment decoder/ driver.	200 MIN
10	To realize and minimize 5 & 6 variables using K-Map Method	200 MIN
	Total	35 hrs

REFERENCES:

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

3. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.

Plont

Woma

Director IQAC

Signature of Teacher

Approved by HOD/Dean

DEPARTMENT OF COMPUTER SCIENCE LESSON PLAN (July-Dec 2025)

Name of Teacher: Ms, Pinkee Designation: Asstt. Professor

Subject Name: DATA STRUCTURES & ALGORITHMS

Branch:AI/ML Semester:3rd Subject Code:PCC-CS-301
Date of Start: 14/07/25 Total Load: 20 hrs Date of Completion: 21/11/25

Module/Unit-1: Introduction and Divide and Conquer Approach

S.No	Name of Topic	Hours
1	WAP to find an element in an array using Linear serach.	100 Min
2	WAP to find an element in a Sorted array using Binary search.	100 Min
3	Implement a stack using array and perform push, pop and peek operation.	100 Min
4	Implement a Queue using array and perform enqueue ,dequeue and peek operation.	100 Min
5	Implement a singly linked list and perform insertion, deletion, and traversal operations.	100 Min
6	Implement a program to perform inorder, preorder, and postorder traversal of a binary tree	100 Min
7	Implement a binary search tree and perform insertion, deletion, and search operations.	100 Min
8	Implement a program to find the height of a binary tree	100 Min
9	Implement a program to sort an array using bubble sort algorithm.	100 Min
10	Implement a program to sort an array using Insertion sort algorithm	100 Min
11	Implement a program to sort an array using Quick sort algorithm	100 Min
12	Implement a program to sort an array using merge sort algorithm	100 Min
13	Implement a program to sort an array using Heap sort algorithm	100 Min
14	Implement a program to perform DFS	100 Min
15	Implement a program to perform BFS	100 Min
	Total	25 Hrs.

TEXT BOOKS/ REFERENCE BOOKS:

TEXT BOOKS and REFERENCE BOOKS:

- 1. A. M. Tenenbaum, Langsam, Moshe J. Augentem, "Data Structures using C," PHI Pub.
- 2. A.V. Aho, J.E. Hopcroft and T.D. Ullman, "Data Structures and Algorithms" Original edition, Addison-Wesley, 1999, Low Priced Edition.

3. Ellis Horowitz & Sartaj Sahni, "Fundamentals of Data structures" Pub, 1983,AW

Signature of Teacher

Approved by HOD/Dean